\(\int \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x)) \, dx\) [595]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 267 \[ \int \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x)) \, dx=-\frac {2 \left (a^2-b^2\right ) (2 A b-5 a B) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{15 a^2 d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (9 a^2 A-2 A b^2+5 a b B\right ) \sqrt {\cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{15 a^2 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}}}+\frac {2 (A b+5 a B) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{15 a d}+\frac {2 A \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{5 d} \]

[Out]

-2/15*(a^2-b^2)*(2*A*b-5*B*a)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(
1/2)*(a/(a+b))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)/a^2/d/cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2)+2/5*A*cos(d
*x+c)^(3/2)*sin(d*x+c)*(a+b*sec(d*x+c))^(1/2)/d+2/15*(A*b+5*B*a)*sin(d*x+c)*cos(d*x+c)^(1/2)*(a+b*sec(d*x+c))^
(1/2)/a/d+2/15*(9*A*a^2-2*A*b^2+5*B*a*b)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x
+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*cos(d*x+c)^(1/2)*(a+b*sec(d*x+c))^(1/2)/a^2/d/((b+a*cos(d*x+c))/(a+b))^(1/2)

Rubi [A] (verified)

Time = 1.07 (sec) , antiderivative size = 267, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {3034, 4117, 4189, 4120, 3941, 2734, 2732, 3943, 2742, 2740} \[ \int \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x)) \, dx=-\frac {2 \left (a^2-b^2\right ) (2 A b-5 a B) \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{15 a^2 d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (9 a^2 A+5 a b B-2 A b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{15 a^2 d \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}+\frac {2 (5 a B+A b) \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}{15 a d}+\frac {2 A \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)}}{5 d} \]

[In]

Int[Cos[c + d*x]^(5/2)*Sqrt[a + b*Sec[c + d*x]]*(A + B*Sec[c + d*x]),x]

[Out]

(-2*(a^2 - b^2)*(2*A*b - 5*a*B)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)])/(15*
a^2*d*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]) + (2*(9*a^2*A - 2*A*b^2 + 5*a*b*B)*Sqrt[Cos[c + d*x]]*Ellip
ticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(15*a^2*d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]) + (2*
(A*b + 5*a*B)*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(15*a*d) + (2*A*Cos[c + d*x]^(3/2)*Sqr
t[a + b*Sec[c + d*x]]*Sin[c + d*x])/(5*d)

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 3034

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.
) + (f_.)*(x_)])^(p_.), x_Symbol] :> Dist[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p, Int[(a + b*Csc[e + f*x])^m*((
c + d*Csc[e + f*x])^n/(g*Csc[e + f*x])^p), x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d
, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && IntegerQ[n])

Rule 3941

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3943

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[Sqrt[d*C
sc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4117

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Dist[1
/(d*n), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1)*Simp[A*b*m - a*B*n - (b*B*n + a*A*(n + 1))*C
sc[e + f*x] - A*b*(m + n + 1)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B,
0] && NeQ[a^2 - b^2, 0] && LtQ[0, m, 1] && LeQ[n, -1]

Rule 4120

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rule 4189

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1
)*((d*Csc[e + f*x])^n/(a*f*n)), x] + Dist[1/(a*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[
a*B*n - A*b*(m + n + 1) + a*(A + A*n + C*n)*Csc[e + f*x] + A*b*(m + n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ
[{a, b, d, e, f, A, B, C, m}, x] && NeQ[a^2 - b^2, 0] && LeQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx \\ & = \frac {2 A \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{5 d}+\frac {1}{5} \left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {1}{2} (A b+5 a B)+\frac {1}{2} (3 a A+5 b B) \sec (c+d x)+A b \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)}} \, dx \\ & = \frac {2 (A b+5 a B) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{15 a d}+\frac {2 A \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{5 d}-\frac {\left (4 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {1}{4} \left (-9 a^2 A+2 A b^2-5 a b B\right )-\frac {1}{4} a (7 A b+5 a B) \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx}{15 a} \\ & = \frac {2 (A b+5 a B) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{15 a d}+\frac {2 A \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{5 d}-\frac {\left (\left (a^2-b^2\right ) (2 A b-5 a B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}} \, dx}{15 a^2}-\frac {\left (\left (-9 a^2 A+2 A b^2-5 a b B\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx}{15 a^2} \\ & = \frac {2 (A b+5 a B) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{15 a d}+\frac {2 A \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{5 d}-\frac {\left (\left (a^2-b^2\right ) (2 A b-5 a B) \sqrt {b+a \cos (c+d x)}\right ) \int \frac {1}{\sqrt {b+a \cos (c+d x)}} \, dx}{15 a^2 \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {\left (\left (-9 a^2 A+2 A b^2-5 a b B\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {b+a \cos (c+d x)} \, dx}{15 a^2 \sqrt {b+a \cos (c+d x)}} \\ & = \frac {2 (A b+5 a B) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{15 a d}+\frac {2 A \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{5 d}-\frac {\left (\left (a^2-b^2\right ) (2 A b-5 a B) \sqrt {\frac {b+a \cos (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{15 a^2 \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {\left (\left (-9 a^2 A+2 A b^2-5 a b B\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}} \, dx}{15 a^2 \sqrt {\frac {b+a \cos (c+d x)}{a+b}}} \\ & = -\frac {2 \left (a^2-b^2\right ) (2 A b-5 a B) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{15 a^2 d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (9 a^2 A-2 A b^2+5 a b B\right ) \sqrt {\cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{15 a^2 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}}}+\frac {2 (A b+5 a B) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{15 a d}+\frac {2 A \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{5 d} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 18.01 (sec) , antiderivative size = 353, normalized size of antiderivative = 1.32 \[ \int \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\frac {2 \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} \left (a (A b+5 a B+3 a A \cos (c+d x)) \sin (c+d x)-\frac {\left (\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)\right )^{3/2} \left (-i (a+b) \left (9 a^2 A-2 A b^2+5 a b B\right ) E\left (i \text {arcsinh}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right ) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {\frac {(b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}+i a (a+b) (9 a A-2 A b+5 a B) \operatorname {EllipticF}\left (i \text {arcsinh}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right ) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {\frac {(b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}-\left (9 a^2 A-2 A b^2+5 a b B\right ) (b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right )^{3/2} \tan \left (\frac {1}{2} (c+d x)\right )\right )}{(b+a \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)}\right )}{15 a^2 d} \]

[In]

Integrate[Cos[c + d*x]^(5/2)*Sqrt[a + b*Sec[c + d*x]]*(A + B*Sec[c + d*x]),x]

[Out]

(2*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]*(a*(A*b + 5*a*B + 3*a*A*Cos[c + d*x])*Sin[c + d*x] - ((Cos[(c +
 d*x)/2]^2*Sec[c + d*x])^(3/2)*((-I)*(a + b)*(9*a^2*A - 2*A*b^2 + 5*a*b*B)*EllipticE[I*ArcSinh[Tan[(c + d*x)/2
]], (-a + b)/(a + b)]*Sec[(c + d*x)/2]^2*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)] + I*a*(a + b)
*(9*a*A - 2*A*b + 5*a*B)*EllipticF[I*ArcSinh[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sec[(c + d*x)/2]^2*Sqrt[((b
+ a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)] - (9*a^2*A - 2*A*b^2 + 5*a*b*B)*(b + a*Cos[c + d*x])*(Sec[(c +
d*x)/2]^2)^(3/2)*Tan[(c + d*x)/2]))/((b + a*Cos[c + d*x])*Sec[c + d*x]^(3/2))))/(15*a^2*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(2459\) vs. \(2(297)=594\).

Time = 10.81 (sec) , antiderivative size = 2460, normalized size of antiderivative = 9.21

method result size
default \(\text {Expression too large to display}\) \(2460\)

[In]

int(cos(d*x+c)^(5/2)*(A+B*sec(d*x+c))*(a+b*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/15/d*(9*A*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+
c))/(cos(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)+4*A*(1/(cos(d*x+c)+1))^(1/2)*((a-b)/(a+b))^(1/2)*a^2*b*cos(d*x+c)*s
in(d*x+c)-A*(1/(cos(d*x+c)+1))^(1/2)*((a-b)/(a+b))^(1/2)*a*b^2*cos(d*x+c)*sin(d*x+c)+10*B*(1/(cos(d*x+c)+1))^(
1/2)*((a-b)/(a+b))^(1/2)*a^2*b*cos(d*x+c)*sin(d*x+c)+9*A*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*Ellip
ticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2*b+2*A*(1/(a+b)*(b+a*cos(d*x+c))/(co
s(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b^2-7*A*(1/(a
+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b)
)^(1/2))*a^2*b-2*A*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-c
sc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b^2-5*B*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a
+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2*b+5*B*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(
1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b^2+5*B*(1/(a+b)*(b+a*cos(d
*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2*b
-2*A*(1/(cos(d*x+c)+1))^(1/2)*((a-b)/(a+b))^(1/2)*b^3*sin(d*x+c)-9*A*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)
-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^3*cos(d*x+c)-2*A*Elliptic
E(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^
(1/2)*b^3*cos(d*x+c)+9*A*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*
(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^3*cos(d*x+c)-5*B*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)
),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^3*cos(d*x+c)+4*A*(1/(cos(d*x+c)+1))^
(1/2)*((a-b)/(a+b))^(1/2)*a^2*b*cos(d*x+c)^2*sin(d*x+c)+2*A*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+
c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b^2*cos(d*x+c)-7*A*EllipticF(((a-b
)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a
^2*b*cos(d*x+c)-2*A*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*
cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b^2*cos(d*x+c)-5*B*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(
-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)+5*B*EllipticE(((a-b)/(a+
b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b^2*
cos(d*x+c)+5*B*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d
*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)+3*A*(1/(cos(d*x+c)+1))^(1/2)*((a-b)/(a+b))^(1/2)*a^3*cos(d*x+c)^
3*sin(d*x+c)+3*A*(1/(cos(d*x+c)+1))^(1/2)*((a-b)/(a+b))^(1/2)*a^3*cos(d*x+c)^2*sin(d*x+c)+5*B*(1/(cos(d*x+c)+1
))^(1/2)*((a-b)/(a+b))^(1/2)*a^3*cos(d*x+c)^2*sin(d*x+c)+9*A*(1/(cos(d*x+c)+1))^(1/2)*((a-b)/(a+b))^(1/2)*a^3*
cos(d*x+c)*sin(d*x+c)+5*B*(1/(cos(d*x+c)+1))^(1/2)*((a-b)/(a+b))^(1/2)*a^3*cos(d*x+c)*sin(d*x+c)+9*A*(1/(cos(d
*x+c)+1))^(1/2)*((a-b)/(a+b))^(1/2)*a^2*b*sin(d*x+c)+A*(1/(cos(d*x+c)+1))^(1/2)*((a-b)/(a+b))^(1/2)*a*b^2*sin(
d*x+c)+5*B*(1/(cos(d*x+c)+1))^(1/2)*((a-b)/(a+b))^(1/2)*a^2*b*sin(d*x+c)+5*B*(1/(cos(d*x+c)+1))^(1/2)*((a-b)/(
a+b))^(1/2)*a*b^2*sin(d*x+c)-9*A*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)
*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^3-2*A*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*Ellipti
cE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*b^3+9*A*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*
x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^3-5*B*(1/(a+b)*(b
+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2
))*a^3)*cos(d*x+c)^(1/2)*(a+b*sec(d*x+c))^(1/2)/a^2/((a-b)/(a+b))^(1/2)/(b+a*cos(d*x+c))/(1/(cos(d*x+c)+1))^(1
/2)/(cos(d*x+c)+1)

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.13 (sec) , antiderivative size = 509, normalized size of antiderivative = 1.91 \[ \int \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\frac {6 \, {\left (3 \, A a^{3} \cos \left (d x + c\right ) + 5 \, B a^{3} + A a^{2} b\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + b}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + \sqrt {2} {\left (-15 i \, B a^{3} - 3 i \, A a^{2} b + 10 i \, B a b^{2} - 4 i \, A b^{3}\right )} \sqrt {a} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right ) + \sqrt {2} {\left (15 i \, B a^{3} + 3 i \, A a^{2} b - 10 i \, B a b^{2} + 4 i \, A b^{3}\right )} \sqrt {a} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right ) - 3 \, \sqrt {2} {\left (-9 i \, A a^{3} - 5 i \, B a^{2} b + 2 i \, A a b^{2}\right )} \sqrt {a} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right ) - 3 \, \sqrt {2} {\left (9 i \, A a^{3} + 5 i \, B a^{2} b - 2 i \, A a b^{2}\right )} \sqrt {a} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right )}{45 \, a^{3} d} \]

[In]

integrate(cos(d*x+c)^(5/2)*(A+B*sec(d*x+c))*(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/45*(6*(3*A*a^3*cos(d*x + c) + 5*B*a^3 + A*a^2*b)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*sqrt(cos(d*x + c))*
sin(d*x + c) + sqrt(2)*(-15*I*B*a^3 - 3*I*A*a^2*b + 10*I*B*a*b^2 - 4*I*A*b^3)*sqrt(a)*weierstrassPInverse(-4/3
*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) + 3*I*a*sin(d*x + c) + 2*b)/a) + sqrt(
2)*(15*I*B*a^3 + 3*I*A*a^2*b - 10*I*B*a*b^2 + 4*I*A*b^3)*sqrt(a)*weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2,
 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) - 3*I*a*sin(d*x + c) + 2*b)/a) - 3*sqrt(2)*(-9*I*A*a^3 - 5*
I*B*a^2*b + 2*I*A*a*b^2)*sqrt(a)*weierstrassZeta(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, weierst
rassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) + 3*I*a*sin(d*x + c)
+ 2*b)/a)) - 3*sqrt(2)*(9*I*A*a^3 + 5*I*B*a^2*b - 2*I*A*a*b^2)*sqrt(a)*weierstrassZeta(-4/3*(3*a^2 - 4*b^2)/a^
2, 8/27*(9*a^2*b - 8*b^3)/a^3, weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(
3*a*cos(d*x + c) - 3*I*a*sin(d*x + c) + 2*b)/a)))/(a^3*d)

Sympy [F(-1)]

Timed out. \[ \int \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**(5/2)*(A+B*sec(d*x+c))*(a+b*sec(d*x+c))**(1/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\int { {\left (B \sec \left (d x + c\right ) + A\right )} \sqrt {b \sec \left (d x + c\right ) + a} \cos \left (d x + c\right )^{\frac {5}{2}} \,d x } \]

[In]

integrate(cos(d*x+c)^(5/2)*(A+B*sec(d*x+c))*(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*sqrt(b*sec(d*x + c) + a)*cos(d*x + c)^(5/2), x)

Giac [F]

\[ \int \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\int { {\left (B \sec \left (d x + c\right ) + A\right )} \sqrt {b \sec \left (d x + c\right ) + a} \cos \left (d x + c\right )^{\frac {5}{2}} \,d x } \]

[In]

integrate(cos(d*x+c)^(5/2)*(A+B*sec(d*x+c))*(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*sqrt(b*sec(d*x + c) + a)*cos(d*x + c)^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\int {\cos \left (c+d\,x\right )}^{5/2}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}} \,d x \]

[In]

int(cos(c + d*x)^(5/2)*(A + B/cos(c + d*x))*(a + b/cos(c + d*x))^(1/2),x)

[Out]

int(cos(c + d*x)^(5/2)*(A + B/cos(c + d*x))*(a + b/cos(c + d*x))^(1/2), x)